據(jù)知名市場(chǎng)研究公司MARKETS ANDMARKETS(M&M)發(fā)布的一份調(diào)查報(bào)告顯示,3D打印陶瓷市場(chǎng)的全球規(guī)模有望從2016年的2780萬(wàn)美金增長(zhǎng)至2021年的1.315億美金,期間的復(fù)合年增長(zhǎng)率(CAGR)將高達(dá)29.6%。
該報(bào)告還顯示,截至目前,3D打印陶瓷市場(chǎng)份額最大的地區(qū)仍是北美,并有望繼續(xù)領(lǐng)跑;歐洲其次,而亞太地區(qū)則有望后來居上,在未來5年里坐擁全球最高的增長(zhǎng)率。主要包含3D打印用陶瓷粉末材料市場(chǎng)、3D打印陶瓷產(chǎn)品市場(chǎng)和相關(guān)設(shè)備、技術(shù)市場(chǎng)等的陶瓷3D打印市場(chǎng),發(fā)展?jié)摿薮蟆?/span>
陶瓷3D打印技術(shù)詳解
陶瓷件的3D打印包括配置陶瓷漿料、繪制三維模型并分層、3D打印成型、燒結(jié)等流程,其無(wú)需原胚和模具,就能直接根據(jù)計(jì)算機(jī)圖形數(shù)據(jù),通過增加材料的方法生成任何形狀的物體,簡(jiǎn)化產(chǎn)品的制造程序,縮短產(chǎn)生的研制周期,提高效率并降低成本。
3D打印陶瓷過程
目前陶瓷3D打印成型技術(shù)主要可以分為噴墨打印技術(shù)(IJP)、熔融沉淀技術(shù)(FDM)、分層實(shí)體制造技術(shù)(LOM)、選擇性激光燒結(jié)技術(shù)(SLS) 和立體光固化技術(shù)(SLA)等。 使用這些技術(shù)打印得到的陶瓷坯體經(jīng)過高溫脫脂和燒結(jié)后便可得到陶瓷部件。根據(jù)成型方法和使用原料的不同,每種打印技術(shù)都有自己的優(yōu)缺點(diǎn),發(fā)展程度也有差距。 1熔融沉積造型(FDM) 熔化沉積造型法由美國(guó)學(xué)者Scott Crump于1988年研制成功,其以熱塑性絲狀為原料,絲通過可在X-Y方向上移動(dòng)的液化器熔化后噴頭噴出,根據(jù)所涉及部件的每一層形狀,逐條線、逐個(gè)層的堆積出部件。FDM使用的原材料有聚丙烯、丙烯腈-丁二烯鑄造蠟質(zhì)等。
FDM具有成本低、結(jié)構(gòu)簡(jiǎn)單、原材料的利用效率高且沒有毒氣或化學(xué)物質(zhì)的污染等優(yōu)勢(shì),但也具有制備出的原型表面有較明顯的條紋、與截面垂直的方向強(qiáng)度小、成型速度相對(duì)較慢、噴頭容易發(fā)生堵塞,不便維護(hù)的劣勢(shì)。 2直寫自由成型(DIW) 直寫自由成型技術(shù),將陶瓷制備成具有固化特性的陶瓷懸浮液,計(jì)算機(jī)控制的Z方向上的漿料輸送裝置在X-Y平面內(nèi)移動(dòng),同時(shí)從針頭擠出陶瓷懸浮液,其在pH值、光照、熱輻射等固化因素作用下實(shí)現(xiàn)固化,逐層堆積形成陶瓷部件毛坯。
DIW具有無(wú)需紫外光和激光的輻射,常溫下成型;可制備高致密化的燒結(jié)體的優(yōu)勢(shì),但也具有水基陶瓷懸浮液穩(wěn)定性較差,保存周期短;有機(jī)物基陶瓷漿料穩(wěn)定性高,保存周期長(zhǎng),但需增加低溫排膠過程,制造成本高的劣勢(shì)。 3噴墨打印技術(shù)(IJP) 噴墨打印法是由Brunel大學(xué)的Evans和Edirisingle研制出來的,它是將含有納米陶瓷粉的懸浮液直接由噴頭噴出以沉積成陶瓷件。目前使用的陶瓷材料有ZrO2、TiO2、Al2O3等。
IJP具有成型原理簡(jiǎn)單,打印頭成本低,易產(chǎn)業(yè)化等優(yōu)勢(shì);但噴墨打印頭堵塞,另外打印高度受限且不能打印內(nèi)部多孔結(jié)構(gòu)模型,還要求粉末粒徑分布均勻,流動(dòng)性好且高溫化學(xué)性質(zhì)穩(wěn)定。 4三維印刷工藝(3DP) 三維打印是由MIT開發(fā)出來的,首先將粉末鋪在工作臺(tái)上,通過噴頭把粘結(jié)劑噴到選定的區(qū)域,將粉末粘結(jié)在一起,形成一個(gè)層,而后,工作臺(tái)下降,填粉后重復(fù)上述過程直至做出整個(gè)部件。目前,以氧化鋯、鋯英砂、氧化鋁、碳化硅和氧化硅等陶瓷粉體為原材料。
3DP具有能夠大規(guī)模成型出陶瓷部件,成本較低的優(yōu)勢(shì),但也具有黏結(jié)劑黏合強(qiáng)度受限導(dǎo)致部件強(qiáng)度有限,難以得到機(jī)械性能優(yōu)良的陶瓷器件的劣勢(shì)。 5激光選區(qū)燒結(jié)/熔融(SLS/SLM) SLM 的思想最初由德國(guó)Fraunhofer研究所于1995年提出,SLS和SLM原理與三維印刷技術(shù)較類似,將粘接劑換為激光束。在高功率比重激光器激光束開始掃描前,水平鋪粉輥先把金屬粉末平鋪到加工室的基板上,然后激光束將按當(dāng)前層的輪廓信息選擇性地熔化基板上的粉末,加工出當(dāng)前層的輪廓,然后調(diào)入下一圖層進(jìn)行加工,如此層層加工,直到整個(gè)部件加工完畢。
SLS/SLM工藝使用的一般是塑料、蠟、陶瓷、金屬或其復(fù)合物的粉末,其具有無(wú)需支撐即可制備復(fù)雜陶瓷部件的優(yōu)點(diǎn),但也存在因受到粘接劑鋪設(shè)比重的限制導(dǎo)致陶瓷制品致比重不高的問題。 6光固化快速成型技術(shù)(SLA) SLA技術(shù)是通過激光的掃描曝光實(shí)現(xiàn)單層的固化。通過紫外激光束,按照設(shè)計(jì)好的原件層截面,聚焦到工作槽中的陶瓷光敏樹脂混合液體,逐點(diǎn)固化,由點(diǎn)及線,由線到面。通過xy方向固化成面后,通過升降臺(tái)在z軸方向的移動(dòng),層層疊加完成三維打印陶瓷部件。
SLA具有成型精度極高陶瓷件燒結(jié)后致比重高的優(yōu)勢(shì);但存在后續(xù)工藝麻煩,以及二次固化問題,另外,SLA難以加工折射率較高的陶瓷材料。 7疊層實(shí)體制造(LOM) 在層片疊加制造工藝中,將單面涂有熱溶膠的箔材通過熱輥加熱,由紙、陶瓷箔、金屬箔等構(gòu)成的材料就會(huì)粘接在一起。然后上方的激光器按照CAD模型分層數(shù)據(jù),用激光束將箔材切割成所制部件的內(nèi)外輪廓,再鋪上新的一層箔材,重復(fù)上述過程,直至整個(gè)零部件打印完成。
LOM具有成形速度快,適合用于制造層狀復(fù)雜結(jié)構(gòu)部件,后期處理過程比較簡(jiǎn)單的優(yōu)勢(shì),但也存在不可避免的產(chǎn)生大量材料浪費(fèi)的現(xiàn)象,利用率有待提高,同時(shí)打印過程采用的激光切割增加了打印成本。 綜述與展望 陶瓷3D打印技術(shù)的出現(xiàn)顛覆了傳統(tǒng)的制造模式,在復(fù)雜結(jié)構(gòu)、一體化制造、降低成本和縮短研制周期等方面極具潛力,打破了陶瓷傳統(tǒng)加工工藝的限制,受到了眾多學(xué)者和企業(yè)家的關(guān)注。 目前國(guó)外陶瓷基3D打印材料制造商主要包括美國(guó)的3DSystems、Tethon 3D和Viridis3D以及澳大利亞Lithioz公司。國(guó)內(nèi)知名企業(yè)有北京太爾時(shí)代、湖南華曙高科、武漢三維、北京十維、浙江迅實(shí)、深圳長(zhǎng)朗、中航邁特等。
相關(guān)數(shù)據(jù)顯示,國(guó)內(nèi)從事3D打印的企業(yè)接近200家,70%集中在桌面打印領(lǐng)域,而從事工業(yè)打印機(jī)生產(chǎn)和研發(fā)的企業(yè)有四五十家,從事金屬打印的企業(yè)有三十家,從事生物打印的企業(yè)大概接近十家,從事材料打印的企業(yè)大概有二三十家。雖然在企業(yè)數(shù)量上,我國(guó)已經(jīng)可以媲美國(guó)外企業(yè),但是在綜合實(shí)力方面,仍有很大的差距。 目前,國(guó)內(nèi)外3D打印發(fā)展的差距: 1)產(chǎn)業(yè)化進(jìn)程緩慢,市場(chǎng)需求不足; 2)美國(guó)3D打印產(chǎn)品的快速制造水平比國(guó)內(nèi)高; 3)燒結(jié)的材料尤其是金屬材料,質(zhì)量和性能比我們好; 4)激光燒結(jié)陶瓷粉末、金屬粉末的工藝方面還有一定差距; 5)國(guó)內(nèi)企業(yè)的收入結(jié)構(gòu)單一,主要靠賣3D打印設(shè)備,而美國(guó)的公司是多元經(jīng)營(yíng),設(shè)備、服務(wù)和材料基本各占銷售收入的1/3。 展望未來,3D打印是以數(shù)字化、網(wǎng)絡(luò)化為基礎(chǔ),以個(gè)性化、短流程為特征,實(shí)現(xiàn)直接制造、桌邊制造和批量訂制的新的制造方式,相信在不久的將來,3D打印技術(shù)一定會(huì)在陶瓷領(lǐng)域大有作為。
Copyright ? 2014-2020 精速三維 All Rights Reserved 備案號(hào):粵ICP備18153175號(hào)-1